

Development of Reentry Vehicles and Payloads for In-Orbit Drug Development

October 18, 2022

Jordan Croom

Session Description and Objectives

 Microgravity brings many advantages for drug development and manufacturing. Researchers have demonstrated that the absence of buoyancy, sedimentation, and convection improves control over particle size distributions, polymorphism, and the kinetics of crystallization. This talk discusses the development of an unmanned orbital reentry vehicle for inorbit drug development. Developed antisolvent and melt/quench hardware, strategies for operating within the constraints of spacecraft design, and unique considerations for hardware in microgravity will be presented.

Learning objectives:

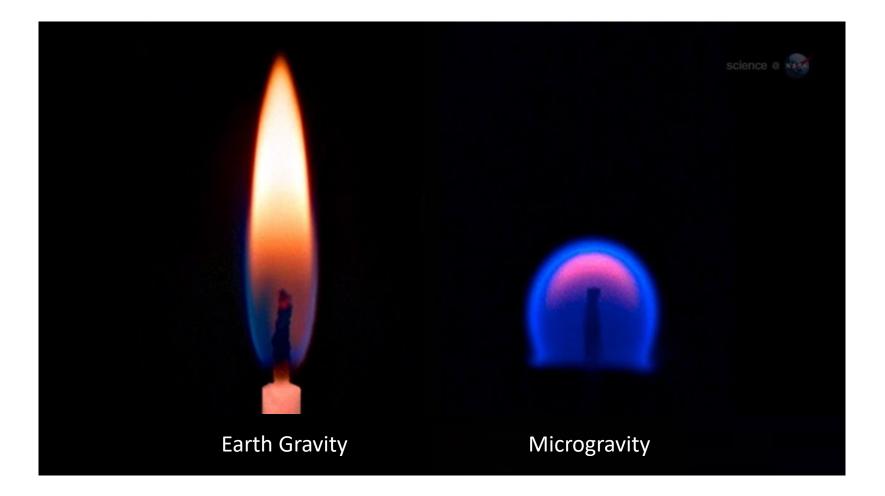
- Understand the benefits of microgravity for small molecule polymorph discovery, form isolation, and manufacturing.
- Understand the constraints and capabilities of autonomous antisolvent and melt/quench microgravity payloads.
- Understand how to leverage microgravity pharmaceutical development equipment for various drug development and manufacturing applications.

Biography and Contact Information

Varda Space Industries is developing in-space platforms for novel pharmaceutical form discovery, isolation, and scaled manufacturing using conditions impossible to replicate on Earth.

Jordan Croom (Presenter) Head of Payloads jordan@varda.com

Eric Lasker Head of Business Development eric@varda.com



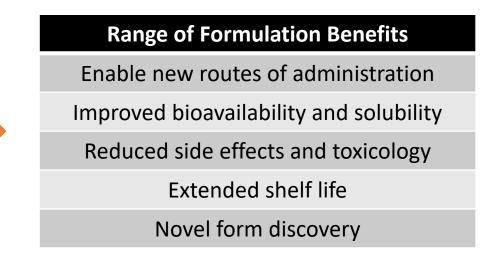
Adrian Radocea Head of Product adrian@varda.com

Dom Hebrault Life Sciences Market Development Lead dhebrault@varda.com

Unique Behavior of Chemical Systems in Microgravity

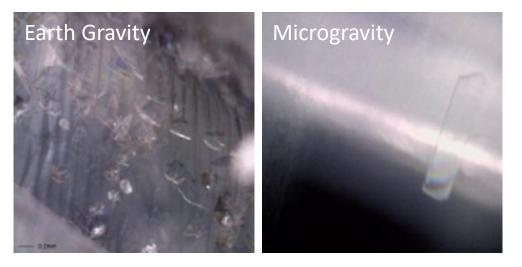
Microgravity Enables Improved Pharmaceuticals

Elimination of buoyancy, natural convection, sedimentation, phase separation drives significant differences in transport-driven phenomena.

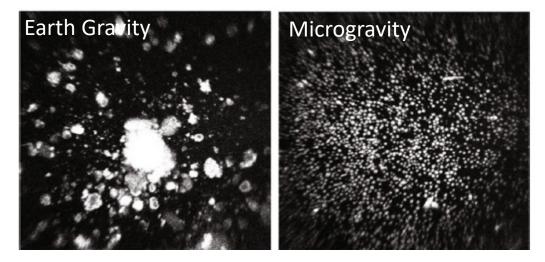

Controllable, uniform crystal size

Isolation of stable forms

More ordered crystals


Larger or smaller crystals

Novel crystal structures or morphologies



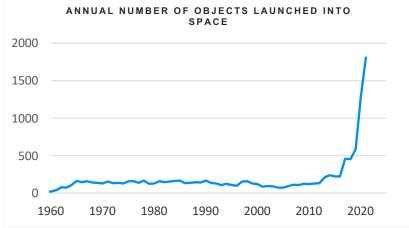
Experimentally Demonstrated Microgravity Effects

Different polymorphs of L-histidine are produced in microgravity than by the same process on Earth.

McPherson, A., DeLucas, L. Microgravity protein crystallization. npj Microgravity 1, 15010 (2015). https://doi.org/10.1038/npjmgrav.2015.10

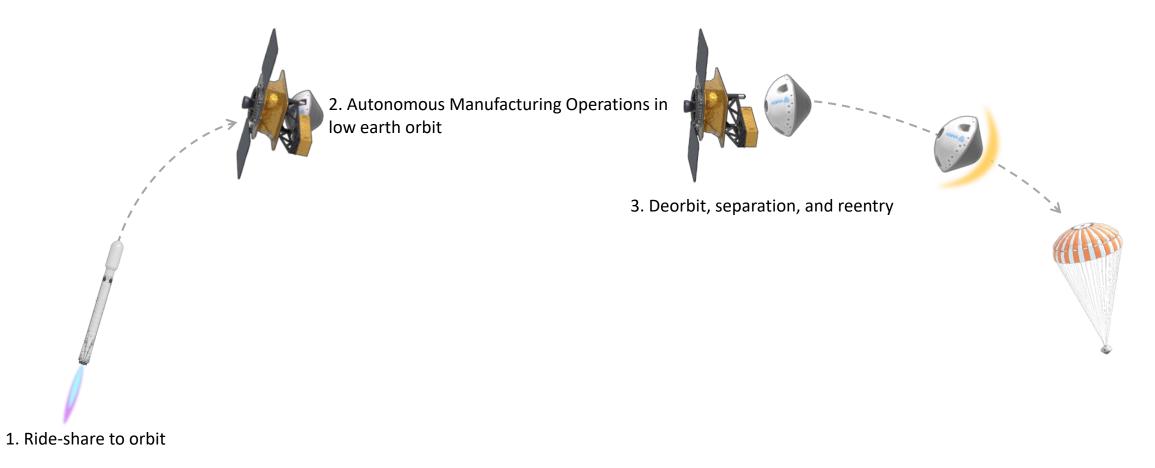
Keytruda produced in microgravity results in smaller, and more uniform crystallization than on Earth, theoretically enabling injectable rather than IV administration.

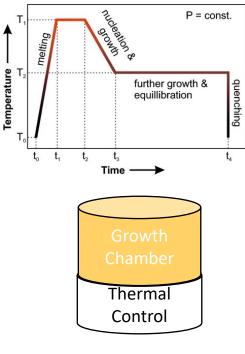

Reichert, P., et al., (2019). Pembrolizumab microgravity crystallization experimentation. npj Microgravity, 5(1), 1-8.c



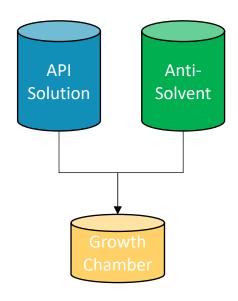
Why Now?

Significant progress from the commercial space industry makes building and launching spacecraft cheaper than ever.


Microgravity is now economically viable for pharmaceutical R&D and production.



Varda's Orbital Manufacturing Platform



High Level Processes Available

Melt / Cool Amorphous Solid Dispersions Cooling Crystallization

Solvent / Antisolvent

Antisolvent Crystallization Slurry Crystallization Cooling Crystallization Evaporative Crystallization

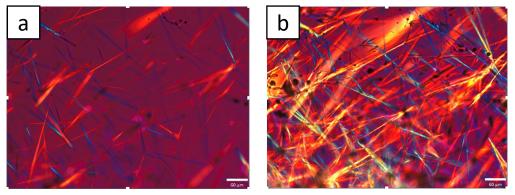
Melt/Cool Process Capabilities (Flights Starting 2023)

- Accommodates both amorphous and crystalline products for small molecule APIs
- Controllable temperature profiles including set points and ramp rates
- Key challenges: launch and space environment, power/thermal management

Parameter	Payload Specification
Process Temp Profile Range (°C)	-10°C to 170°C
Pre-Process Storage Temp Range (°C)	10-32°C
Volume per Sample	0.1 to 1 mL
Unique Samples per Flight	Up to 100
Returned Products	Solid Material
APIs Supported	Any Compatible with 316L Stainless Steel, PTFE
In-Situ Monitoring Capabilities	Temp, Acceleration Future Work: Raman

Runs on Less Power than a Single Incandescent Bulb

Melt/Cool Payload Currently Integrated into Flight 1 Capsule (Launching early 2023)


Melt/Cool Results

- Ground based development testing on hardware revealed first new polymorph of Ritonavir characterized in 24 years
- Showed ability to isolate and grow "Form III" Ritonavir on flight hardware
- Results discussed in "Pharmaceutical Experiments for Microgravity" with Stephan Parent 3:15 on Wednesday and published in Chemrxiv (see ref below)
- Extending results to microgravity with first flight in early 2023

Ritonavir Form III: Lighting strikes twice at the same time, 137 miles apart

Stephan D. Parent¹, Pamela A. Smith¹, Dale K. Purcell¹, Daniel T. Smith¹, Susan J. Bogdanowich-Knipp¹, Ami S. Bhavsar², Larry R. Chan², Jordan M. Croom², Haley C. Bauser², Andrew McCalip², Stephen R. Byrn¹, Adrian Radocea²

1. Improved Pharma LLC, West Lafayette, IN 47906 2. Varda Space Industries, El Segundo, CA 90245

Hot stage microscopy during growth at a) 5 hours and b) 8 hours

Solvent-Based Process Capabilities (Flights Starting 2024)

- Capable of antisolvent addition, cooling crystallization, evaporative crystallization, slurry crystallization of small molecule APIs
- Controllable temperature profiles including set points and ramp rates
- Key challenges: fluid location control, mixing, bubble removal

Parameter	Payload Specification
Process Temp Profile Range (°C)	0°C to 80°C
Pre-Process Storage Temp Range (°C)	10-32°C
Volume per Sample	20 mL Mixed Solution
Unique Samples per Flight	Up to 24
Pre-Process API Storage	Dry Powder, Mixed In-situ
Returned Material	Solid Products, Mother Liquor
Solvents, APIs Supported	Any Compatible with 316L Stainless Steel, PTFE
In-Situ Monitoring Capabilities	Temp, Turbidity, Acceleration Future Work: Raman, Microscope

Bubbles in Zero G Do Not Coalesce in a Controlled Location

Varda's Orbital Manufacturing Platform

- Offering solvent-based and melt/cool process on flights starting in early 2023
- Planning to support biologics in ~2025
- Can be quickly scaled as research moves to production
- Learn more about microgravity implications from "Pharmaceutical Experiments for Microgravity" with Stephan Parent at 3:15 on Wednesday

References

- Snell, E. H., & Helliwell, J. R. (2005). Macromolecular crystallization in microgravity. Reports on Progress in Physics, 68(4), 799.
- Reichert, P., et al., (2019). Pembrolizumab microgravity crystallization experimentation. npj Microgravity, 5(1), 1-8.
- Zhang, Y., Cheng, J., Glick, Y., Samburski, G., Chen, J., & Yang, C. (2020). Antisolvent Crystallization of L-histidine in Micro-Channel Reactor under Microgravity. Microgravity Science and Technology, 32(1), 27-33.
- McPherson, A., DeLucas, L. Microgravity protein crystallization. npj Microgravity 1, 15010 (2015). <u>https://doi.org/10.1038/npjmgrav.2015.10</u>
- Parent S, Smith P, Purcell D, Smith D, Bogdanowich-Knipp S, Bhavsar A, et al. Ritonavir Form III: Lightning strikes twice at the same time, 137 miles apart. ChemRxiv. Cambridge: Cambridge Open Engage; 2022; This content is a preprint and has not been peerreviewed.

Acknowledgments

Adrian Radocea Ami Bhavsar Andrew McCalip Larry Chan Jordan Croom Haley Bauser

Stephan Parent Pamela Smith Dale Purcell

Daniel Smith

Susan Bogdanowich-Knipp Stephen Byrn

Questions

Jordan Croom (Presenter) Head of Payloads jordan@varda.com

Eric Lasker Head of Business Development eric@varda.com

Adrian Radocea Head of Product adrian@varda.com

Dom Hebrault Life Sciences Market Development Lead dhebrault@varda.com

